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Due to velocity "differences in the flow of a reac t ing  fluid, the degree of t ransformat ion  at the walls can 
great ly  exceed the average value over  the c ross  section, and if the react ing fluid loses  fluidity with high degrees 
of t ransformat ion ,  then a continuous growth of a congealed layer  of the react ion products occurs  at the walls. 
Thus, in the case of polymeriza t ion at high monomer  concentrations (or in the bulk), r eac to r  channels and 
pipelines are  observed to be overgrown with the polymer.  This phenomenon is welt known to engineers,  but 
theoret ical  investigations of the dynamics of this p rocess  have not been ca r r i ed  out. In this paper,  the dy-  
namics  of the p roces s  will be examined under the following assumptions:  The t empera tu re  of the reacting fluid 
remains  constant,  the fluid is a Newtonian fluid, the flow is laminar ,  and the p roce s s  is quasis tat ionary.  Rela- 
tions are  obtained that permi t  forecas t ing the rate of growth of the s ta t ionary layer  of react ion products .  In 
addition to the hydrodynamic charac te r i s t i c s ,  the rate of growth depends also only on a single parameter ,  
which is determined by the nature of the change in the viscosi ty  with t ime and is found f rom a solution of a 
s e l f - s imi l a r  boundary-value problem.  

1. We are examining the i sothermal  flow of a react ing Newtonian fluid, which losses  fluidity at high 
degrees of t ransformat ion.  The fluid is assumed to be quite viscous,  while the change in the radius of the flow 
along the pipe (of a f low-through tubular reactor)  is smooth enough that in each separate  section, the fluid flow 
can be assumed to be practically- p lane-para l le l .  This approximation is widely used in theoret ical  invest iga-  
tions of different problems concerning the flow of a fluid with var iable  proper t ies  (see, for  example, [1-3]); in 
o rder  to find the flow velocity in this approximation, it follows f rom the general  equations of motion of a New- 
tonian fluid [4] that 

t ~ [ 0v~ ap 
r Tr~rTr)+ ~----O, O ~ r ~ R ( z ,  t), O < z ~ L ,  (1.1) 

where v is the axial component of the flow velocity; p ,  v iscosi ty  of the fluid; r, distance f rom the axis of the 
pipe; p = p(z, t), difference between the p r e s s u r e  at the inlet to the tube and the p re s su re  at the given section; 
z, distance f rom the beginning of the pipe; R, radius of tim flow (inner radius of the s ta t ionary layer  of r e a c -  
tion products);  L, pipe length; and t, t ime. We shall  assume that the density of the fluid p is constant and the 
radial component of the velocity w is obtained f rom the equation of continuity 

7" ~ (rw) -}- ~z = 0. (1.2) 

In view of the smal lness  of the diffusion coefficients in fluids, the effect of diffusion on the flow of the r e -  
action in the flow can be neglected.  In this connection, at any point of the flow of the react ing isothermal  fluid, 
the depth of t ransformat ion  and the mechanical  proper t ies  of the fluid depend only on the time, during which the 
given element of fluid is a l ready found in the flow (flow-through reactor) .  The fluid motion has no effect on 
these dependences and they can be assumed to be fixed. 

The loss of fluidity formal ly  means that after  the passage of some per iod of time t 0, determined by t he  
rate of the chemical  t ransformat ions ,  the viscosi ty  of  the fluid becomes infinite. In accordance with this, we 
shall assume a time dependence of the v iscos i ty  in the form 

~/~ = l ( ~ ) ,  (1 .3 )  

where p 0 is the value of the viscosity, corresponding to the initial fluid; ~ is the dimensionless time, passing 
from the time that the element of the fluid enters the reactor. As ~ increases, the function f(~) decreases 
from the value f =i at ~ =0, f(~) =0for~ > i. For,r < l,f(~) > 0. 

Chernogolovka. Translated from Zhurnal Prildadnoi Mekhanild i Tekhnicheskoi Fiziki, No. 3, pp. 47-53, 
May-June, 1982. Original article submitted February 6, 1981. 

0021-8944/82/2303-0355 $07.50 �9 1982 Plenum Publishing Corporat ion 355 



The ra te  of growth of the s ta t ionary  l ayer  of reac t ion  products  is de te rmined  by the condition that  the 
t ime  over  which the fluid e lements  reach  the su r face  of this l a y e r  equals  t 0. The dis tr ibut ion ~ = ~(t,  z, r) 
mus t  thus be such that  at the pe r iphe ry  of the flow the condition 3 = 1 be sa t i s f ied .  At the beginning of the 
pipe (reactor) ,  d = 0, and then the value of ~ i nc rea se s  with dis tance downs t ream along the flow. Fo r  a fixed 
fluid element ,  the  inc rement  to ~ is re la ted  to i ts  d i sp lacement  and velocity along the flow by the re la t ion  d~ = 
d z / v t  o. 

Compared  to the average  res idence  t ime  of the fluid in the reac to r ,  the pe r iod  t o is  a s sumed  to be suff i -  
ciently long that  the change in the  p r o p e r t i e s  of the fluid affect  only a na r row layer  moving at the edges of the 
flow and apprec iable  changes in the flow radius  occur  only over  a t ime  g rea t ly  exceeding t 0. The flow c h a r a c -  
t e r i s t i c s  and t he i r  ra te  of change with t ime ,  in this case ,  will be complete ly  de te rmined  by the running d i s t r ibu-  
t ion of the radius  of the flow along the pipe and fo r  this r e a son  it  is appropr ia te  to call  the given app rox ima-  
tion a quas i s ta t ionary  approximat ion.  

The approximat ion  indicated means  that  

V/Qto << i,  (1.4) 

where  Q is the volume flow ra te  of the fluid; U is the volume of the channel, f r ee  of the s ta t ionary  l aye r  of r e -  
action products :  

z 

u (z, 0 = S ~R~ (~, t) dE. (1.5) 
0 

Condition (1.4), in any case ,  i s  sa t i s f ied  nea r  the beginning of the pipe.  And, since the f r ee  volume of the chan-  
nel U d e c r e a s e s  with growth of the s ta t ionary  l aye r  of reac t ion  products ,  even if condition (1.4) is  not init ially 
sa t i s f i ed  fo r  p a r t  of the pipe,  with t ime  and with the s ame  fluid flow ra te ,  the requ i red  degree  of sma l lnes s  of 
the quantity U / Q t  0 will be  attained over  the ent i re  length of pipe.  The effect  of the preceding  nonquasis ta t ionary  
s tage could be taken  into account by giving an appropr ia te  distr ibution of the flow radius .  

F r o m  the ma themat i ca l  point of view, the quas i s ta t ionary  approximat ion being examined co r re sponds  to 
the leading t e r m  in the asymptot ic  exp res s ion  for  U / Q t  0 -~ 0. 

2. We shall  f i r s t  examine a model example ,  in which the v i scos i ty  of the fluid r e m a i n s  unchanged through-  
out the per iod  t 0, f(~) = 1 fo r  all  ~ < 1. The solution of the p rob lem in this case  is  g rea t ly  simplif ied,  s ince it 
is no longer  n e c e s s a r y  to examine the hydrodynamic  pa r t .  The flow veloci ty in each  s epa ra t e  sect ion is de -  
s c r ibed  by a pa rabo l ic  Poiseui l le  prof i le  

v = (2Q/~Rg(i - -  r2/It~), 0 <~ r <~ B(z, t). (2.1) 

We shall  denote by q =q(t,  z ,  r) the amount of fluid, c ross ing  the sect ion z = const  at a given t ime at d i s -  
tances  f r o m  the axis g r e a t e r  than a given value r 

R 

q = S v2nrdr, (2.2) 
Y 

and we shall  follow the value of q, corresponding to a fixed fluid e lement .  Since f r o m  (2.2), taking into account 
(1.2), it follows that 

Oq/Or = --2~rv, Oq/Oz = 2~rw. (2.3) 

We have for  the change in the value of q cor responding  to the fix~ed e l emen t  

dg/dt ==. Oq/Ot + vOq/O~ -}- wOq/Or = Og/Oto (2.4) 

Substitution of (2.1) into (2.2) shows that  in this case  

q = Q(t - -  r~/R~) 2, (2.5) 

f rom which it follows, talmlg into account (2.1), that  

Oq/Ot = vn(OR2/Ot)r~/B 2, (2.6) 

while,  s ince within the scope of the quas is ta t ionary  approximat ion it is sufficient to l imi t  the analysis  to fluid 
e lements  moving at the edges of the flow, in (2.6), we can set  r 2 / R  2 -~ 1. As a resul t ,  substituting (2.6) into 
(2.4) and integrat ing along the t r a j ec to ry  of motion, we have 
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z 

S OR ~ . 
q = qo + n ~ F  az,  (2.7) 

0 

where q0 is the value of the quantity q at the pipe inlet corresponding to the given fluid element, while the values 
of 8R2(z, t)/8t in calculating the integral are taken for  those t imes at which the fluid element being examined 
in tersects  the given section. But, according to the assumptions made,  the changes in the quantities occurr ing 
over  t ime intervals of the o rde r  of t o can be neg lec ted .  For  this reason,  in (2.7), all quantities can be assumed 
to relate  to the same t i m e  and, changing the o rde r  of the integration and differentiation operations,  relation 
(2.7) taking into account (1.5) can be represen ted  in the fo rm 

q = qo ~ Ut(z, t). (2.8) 

Relation (2.8) already permi t s  relat ing the p a r a m e t e r s  of the t r a j ec to ry  of a separa te  fluid element to 
the rate of growth of the s ta t ionary layer  of react ion products .  Thus, if the fluid element being examined 
reaches  the surface of the s ta t ionary layer  of products  at a distance z 0 f rom the beginning of the pipe, then, 
determining the value of q0 corresponding to this element f rom the condition that on the surface  of the s ta t ion-  
ary  l aye r  q = 0, f rom (2.8) we obtain for  its t r a jec to ry  of motion 

f 
q = Ut (z, t) -- Ut (z0, t). (2.9) 

The velocity is determined by the relation v = 2(qQ1/~/TrR 2, which follows f rom (2.1) and (2.2); in o rder  to ca l -  
culate the value of the dimensionless  t ime ~ (z, z0), over  which the fluid element being examined reaches  the 
give~ section,  taldng into account (1.5), we have 

dO = i t _  ~ v:(~, t) a~ 
- ~to - zt  ~ V ~  l / v ~  (~, t):-  v~ (~0, t) ~ (2.10) 

At z = z 0, the condition ~ = 1 must  be satisfied, and since the fluid element being examined,  and thus the 
values of z 0, are  chosen arb i t rar i ly ,  an integral  equation for  OU/Or, i.e., the rate of growth of the s ta t ionary 
layer  of react ion products:  follows in an obvious manner  f rom (2.10). It may be verif ied by direct  substitution 
that the solution of this equation is 

OU n~ U ~ 
~7 = - ~ o "  (2.11) 

Indeed, substituting (2.11) into (2.10) and integrating, we find for the change in the value of d along the t r a -  
jec tory  of motion of the element, reaching at z = z 0 the surface of the stat ionary layer  of react ion products,  

~(z, z0) = (2/n) arcsin (U/Uo) , U o ~ .  U(zo, t), (2,12) 

f rom where it indeed follows that at z = z 0 (U = U0), d = 1. Eliminating f rom (2o12) with the help of (2.11) and 
(2.9), the value of U 0, we finally obtain the following express ion for  the distribution of ~: 

= - -  a r c s i n  n ~ + - ~  �9 ( 2 . 1 3 )  

Thus, the value of ~ depends only on a single unique complex of variables .  We also note that, applying 
relat ion (2.11) and (2.13), we can check the  validity of the o rder  of smal lness  of various quantities for  U/Qt0--* 0, 
used in the calculations ca r r i ed  out above. 

3. We shall  now proceed  to examine the general  case of an a rb i t r a ry  dependence (1.3) of the fluid v i s -  
cosity on the residence time in the reac to r .  In this case,  in accordance with the solution of the model problem 
obtained abc~e, we shall seek the distribution of the residence t ime of fluid elements in the flow in the f o r m  
of a function of the s e l f - s imi l a r  variable 

X = (q/Q)(Qto/U) 2, (3.1) 

while for  the ra te  of growth of the s tat ionary layer  of reaction products ,  in analogy to (2.11), we shall assume 
the relation 

d U/Ot = --a~(U/to)  U/Qto, (3.2) 

where the constant a must  be determined in solving the problem; differentiating (3.2) with respec to z and 
taking into account (1.5), the following expression is obtained for  the time rate of change of the channel r a -  
dius R: 

357 



OR~/Ot ----- --2a2(R2/to) UIQt~ (3.3) 

The s e l f - s i m i l a r  equation sought is a resu l t  of the obvious identity t0dO/dt  _= 1, which in this case  takes  the 
f o r m  

to(d~/dX)dX]dt ---- t ,  (3.4) 

while the value of a mus t  be such that a solution O = O(x) of the equation following f r o m  (3.4) by substi tuting 
into the express ion  fo r  dX/d t  (it is understood,  natura l ly ,  that  for  U / Q t  0 - -  0, the total  der iva t ive  d X / d t  will 
be a function only of the var iab le  X), sat isfying the  boundary conditions 

= i for x = 0 ,  ~ - . 0  for X ~  co (3 .5 )  

exis t s .  

Since i t  follows f r o m  (3.1), taking into account (2.4) and (1.5) that  

dX, oX..FvoX w~ aX , ~R ~.. 
U"'/" ~ o"7 ~ "-F 0r~ = ~F - -  zv  "0-  `% (3 .6 )  

the calculat ion of the total  der ivat ive  d x / d t  reduces  to finding express ions  fo r  OX/Ot  and v. The bas i s  for  
finding the flow veloci ty  v is the equation, following f r o m  (1.1), 

~Ov/Or = --( i/2)rOp/Oz. (3.7) 

In accordance  with (2.3) and (3.1), we have 

~ r ' ~ ' ~  , - -  2 ~ r v ~  ---- - -  ~r ~-~-f ,  (3.8) 

while s ince fo r  U / Q t  0 << 1, the p r o p e r t i e s  of the fluid change only in a nar row l aye r  at the edges of the flow, 
for  8 p / 0 z  in the l imit ing ease  being examined,  in accordance  with Po i seu i l l e ' s  law [4], we have  

Op/Oz = 8~oQ/~R 4. ( 3 . 9 )  

As a resu l t ,  substi tut ing (3.8), (3.9), and (1.3) into (3.7) and integrat ing,  we obtain for  the flow veloci ty  

2[ 
2U ~-f-(-~) y [ (~ (x)) dx. (3.10) = - ~ V  (), F(X)= 

o 

In o rder  to find the par t ia l  der ivat ive  OX/Ot ,  we shall  p roceed  as follows: We shall  de te rmine  the de-  
pendence r = r(t ,  z ,  X), and then we shal l  di f ferent ia te  the expres s ion  obtained with r e s p e c t  to t with fixed z 
and X. According to (2.3), 0r2/0q = - l / W ,  while substi tuting he re  (3.10) and integrat ing,  taking into account 
(3.1), we have 

X 
r 2 t U ! dz  

t t  

F o r  the pa r t i a l  der iva t ive  8 X / 0 t ,  it follows f rom (3.11) taking into account (3.2) and (3.3), 

X 
t OX I - -  - -  4a 2 _~ (t  o 0p 3a ~ U ~ ~ dx 

Assuming that  the change of the fluid flow rate  with t ime,  if i t  occurs ,  occurs  sufficiently slowly, we obtain 
f r o m  (3.12) for  U / Q t  0 ~ 0 

toOX/Ot = - - S a 2 V ' F ~ .  (3.13) 

Substituting (3.13) and (3.10) into (3.6) indeed shows that  for  U / Q t  0 ~ 0 the total  der iva t ive  d X / d t  is a 
function of only the single s e l f - s i m i l a r  va r iab le  X 

todX/dt = --4(X -}- a~)]:F(X), (3.i4) 

and, thus, the following s e l f - s i m i l a r  in tegrodifferent ia l  equation follows f r o m  (3.4) and (3.14): 
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TABLE 1 

n a t~,/t,s 

i0 0,86 0,92 
5 0,92 0,86 
2 i,08 0,73 
t t,30 0,6o 
t12 t,65 0,47 
1/4 2,20 o .36 
i/8 3,00 0,26 

0,4~0,~ 
0 0,2 0,4 % 

"u 

Fig. 1 

d_~ 4 (X -F a s) ] (~ (x))dx (3.15) dO ~ 

Dif feren t ia t ing  (3.15) and e l imina t ing  the value of the in tegra l ,  we obtain a non l inea r  d i f fe ren t ia l  equat ion,  which  
a s s u m e s  the fol lowing f o r m  if ~ is taken as the independent  va r i ab le :  

Yd2Y/d~ ~ = (dYIdO) 2 .-~ 8Y~f(9), Y ~ X -- a:. (3.16) 

The so lu t ion  of Eq. (3.16) m u s t  sa t i s fy  the  bounda ry  condi t ions  

Y--~ co for 0 ~ 0 .  Y = a 2, dY/dO = 0 for 0 ~ t. (3.17) 

These  condi t ions ,  of which  the f i r s t  two c o r r e s p o n d  to  (3.5), while the  l a s t  condi t ion  fol lows f r o m  (3.15) f o r  
X - -  0, comple te ly  d e t e r m i n e  the solut ion and value of a sought .  

In ana lyz ing  the  b o u n d a r y - v a l u e  p r o b l e m  obtained,  it is convenient  to  in t roduce  the va r i ab le  y = 1/z ~ f~ ,  
which in c o n t r a s t  to Y r e m a i n s  bounded f o r  all ~ .  T r a n s f o r m i n g  to  the new va r i ab l e ,  we obtain the fol lowing 
equat ion f r o m  (3.16): 

yd~y/do 2 = (dg/dO) 2 ](0), (3.18) 

whose solut ion mus t  sa t i s fy  the condi t ions  

y = 0 for 0 -~ 0, dy/d9 = 0 for @ ~ 1. (3.19) 

Let  us a s s u m e  that  condi t ions  (3.19) a re  sa t i s f i ed  by two so lu t ions  yl(~)  and Y2(~) of Eq. (3.18) such  tha t  
yl(1) > Y2(1). Since it fol lows f r o m  (3.18) tha t  yt(0) = If(0)] i/2 f o r  these  cu rves ,  f o r  # --* 0, we have Yl(d) /Y~(~)~  
y~(0)/Y2V(0) = 1. At the  s a m e  t ime ,  s ince  Eq. (3.18) can be r e p r e s e n t e d  a l so  in the f o r m  d2in y / d ~  2 = - y - 2 f ( ~ ) ,  
we obtain the fol lowing e x p r e s s i o n  fo r  the ra t io  Yi/Y2: 

1 

0' 

f r o m  where  it follows that  yl(~)/y2(~)->yl(1)/Y2(1)> 1, which con t r ad ic t s  the l imi t ing  ease  found e a r l i e r  f o r  
-* 0. The con t rad ic t ion  indica ted  p r o v e s  the uniqueness  of  the solut ion.  

The solut ion of the p r o b l e m  can  be found n u m e r i c a l l y  by the ranging  method,  examining  the d i f fe ren t  in-  
t e g r a l  c u r v e s  of Eq. (3.18) sa t i s fy ing  condi t ion (3.19) with ,~ = 1. In teg ra l  c u r v e s  f o r  which y(0) > 0 c o r r e -  
spond to the va lues  y(1) > 1/2a ; if, on the o the r  hand,  the curve  r e a c h e s  the y = 0 axis  f o r  ~ > 0, then y(1) < 

72 a �9 

Table  1 p r e s e n t s  the va lues  of the p a r a m e t e r  a obtained n u m e r i c a l l y  f o r  the case  f(~) = 1 - ~n.  In addi -  
t ion, the ra t io  t . / t  --- ( v / 4 ) / a  is indicated.  The quant i ty  t ,  in t roduced  h e r e  r e p r e s e n t s  the c h a r a c t e r i s t i c  
p e r i o d  of t ime  f o r  each  f ixed law of va r i a t i on  of v i s cos i ty .  The  s m a l l e r  n, i .e . ,  the e a r l i e r  v i s c o s i t y  of the 
fluid, begins  to d i f fer  app rec i ab ly  f r o m  t he  init ial  value,  the s m a l l e r  is the value of t . .  As  n i n c r e a s e s ,  the 
funct ion f($) app roaches  the ease  of the jumpl ike  change in v i s c o s i t y  examined  in the p reced ing  sec t ion ,  in 
which a = v / 4 ,  and the quant i ty  t .  app roaches  t 0. 

4. Thus,  as ide  f r o m  the hyd rodyna m i c  c h a r a c t e r i s t i c s ,  the only p a r a m e t e r  tha t  d e t e r m i n e s  the r a t e  of 
g rowth  of the s t a t i o n a r y  l a y e r  of r e a c t i o n  p roduc t s  is the quanti ty 
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OU ~2 U ~ 
-~  -~- - -  l--~Qt-~,, (4.1) 

while integrat ing (4.1), a f te r  s imple  t r ans fo rma t ions ,  we obtain the following for  the change in the f r ee  volume 
U channel radius  R with t ime:  

R(z, o)/R(z, t) = U(z, o)/u(z, t) = i + a(t)U(z, 0), (4.2) 
where the function G(t) is de te rmined  by the condition 

dG/dt ---- nVl6QtZd, G (0) = 0. (4.3) 

F o r  any finite value of G, the channel radius  di f fers  f r o m  0 and fluid motion is poss ib le .  

The re la t ions  obtained complete ly  de te rmine  the behav ior  of the sys t em.  Thus, if init ially there  is no 
congealed l a y e r  of reac t ion  products  at the walls  of the tube [R(z, 0) - R0], then it follows for  the radius  of the 
flow f r o m  (4.2) 

Bo/R = i q- ~P (t) z /L ,  ~P (t) ~_ G (t) r~R~L, (4.4) 

while,  f o r  the p r e s s u r e  drop, we obtain f r o m  (3.9) and (4.4) 

L 
8/XoQ dz 8FoLQ q) i 5 t p =  f ~ -  ( + ) -  
"~JR'(~,t)- -R~ 5r " 

In the case  of a constant  p r e s s u r e  drop, for  the fluid flow ra te ,  it follows f r o m  (4.5) 

(4.5) 

Q __  5 0  n R o ~ P  
Qo= ( i + r  Q o ~ - - Q ( O ) - ~ ,  (4.6) 

and fo r  finding the dependence @ (t) we have f r o m  (4.3) and (4.6) 

r 

x ----- T6 Q--~-'. t - -  (t + ~1'--~" (4.7) 
o 

2he dependences if(T) and Q(T) following f r o m  (4.7) and (4.6) a re  shown in the f igure ,  f r o m  where  it is ev i -  
dent that  ove r  mos t  of the  range  of var ia t ion,  the fluid flow ra te  is sa t i s fac to r i ly  approximated  by the f i r s t  
two t e r m s  in a Taylor  s e r i e s  expansion,  Q/Q0 ~- 1 - 2~.  The motion of the fluid ceases  fo r  

% = ; 5~a~ ----- 0 , 5 7 5 6 .  

0 

If, on the other  hand ,  the flow ra te  of the fluid is  mainta ined constant ,  then ~ = T and f r o m  (4.5) we obtain the 
following fo r  the p r e s s u r e  drop: 

,_p = (1 + ~}~- i Po ----- P (0) --- 8__~z 
Po 5"~ 

while f r o m  (4.4), we obtain the following fo r  the change in the channel radius with t ime: 

[R R~ = t + ~ ~ t. (4.S) 

7he l inear i ty  of the change in the ra t io  R0/R p e r m i t s  de termining  empi r i ca l ly  the quantity t .  f r o m  e x p e r i -  
ments  with constant  fluid flow ra te .  

In conclusion, we point out that  if together  with the change in the v iscosi ty ,  the fluid density also changes 
f r o m  the initial value P0 to Pl, then instead of (4.1) we shall  have 

OU n~ P0 U ~ 
O"F = - -  ~ P--1 Qt-"~, (4.9) 

and an addition cor responding  to (4.9) appea r s  in express ions  (4.3), (4.7), and (4.8). The quantity t ,  in this  
case ,  as before ,  is de te rmined  by the re la t ion  t . / t  0 ~_ ( 4 / ~ r ) / a  and the function on f(~) = PoPe~P# will appea r  
only in Eqs.  (3.16) and (3.18), which are  used to find the p a r a m e t e r  a (or t . ) ,  instead of (1.3). 
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E F F E C T I V E  P E R M E A B I L I T Y  OF  A H I G H L Y  P O R O U S  M E D I U M  

V.  I .  S e l y a k o v  UDC 536.21-'620.191.33 

The problem of hhe effective conductivity of a medium with a low concentrat ion of inclusions has been 
t rea ted  in many papers  (e.g., [1]). The case  of a medium with a random distribution of c i r cu la r  inclusions 
charac te r ized  by a binary corre la t ion  function was t rea ted  in [2] by using the apparatus of ensemble averages .  
We use methods of the theory of functions of a complex variable to solve the two-dimensional  problem of the 
effective permeabi l i ty  of a medium with translat ional  s y m m e t r y  of an ar rangement  of c i rcu la r  inclusions. 
Since a corre la t ion  function does not have to be defined for an ordered  ar rangement  of inclusions, the ef fec-  
t ive permeabi l i ty  of the medium can be determined when the concentration of inclusions is not low. By using 
methods of the theory  of functions of a complex variable,  we obtain an effective solution of this kind of p rob-  
lem fo r  inclusions of a rb i t r a ry  shape by conformal  mapping onto the ex te r ior  of a unit c i rc le .  In this sense 
the solution of the basic problem is reduced. The problem was solved by using the approach developed in [3, 4] 
for  determining the state of s t r e s s  of a plane weakened by an infinite number  of c i rcu la r  holes.  The basic idea 
of this approach consists  in represent ing the required  solution in the fo rm of a Laurent  se r i e s  by expanding it 
in t e r m s  of the smal l  pa r ame te r  ~ = 1 / l ,  where l is the distance between centers  of the inclusions, and using 
the basic idea of the Bubnov-Gale rk in  method to find the expansion coefficients.  As in the elast ici ty problem, 
this is an effective method of solving t ransmiss ib i l i ty  problems in a medium with an infinite number  of in- 
clusions.  By averaging the solution over  a macroscop ic  volume the effective t ransmiss ib i l i ty  coefficient of 
such a medium can be determined.  

Fi l t ra t ion in a Medium with Ci rcular  Inclusions. Let us consider  the steady fi l trat ion of a fluid in a 
medium with c i r cu la r  inclusions a r ranged  as shown in Fig.  1. Without loss of general i ty,  we take the inclusions 
of unit radius.  The dis tances along the x and y axes between the centers  of neighboring c i rc les  are assumed 
equal to l. Thus, the centers  of the c i rc les  lie at the points 

zn,p = l (n  + ip),  

where i = ~/-1; n = 0, +1, •  +~; p = 0, +2, . . .  +~.  As in [5], it is convenient to describe fi l tration flow 
by. introducing the complex potentials 

q~v = (kv/~)Pv + i~v, v = 0, t. 

Here ~0 corresponds  to the fi l trat ion region in the medium outside an inclusion, and ~l to the region inside an 
inclusion; the k~ are  the permeabi l i t ies  of the medium and inclusion, respectively;  p is the viscosi ty of the 
fluid; the P~ are  the p re s su res  of the fluid in the medium and within an inclusion respectively;  the r ~ are the 
flow functions. The complex potentials must  sat isfy Laplace ' s  equation 

zlgv = 0 (1) 

and are analytic in the respect ive domains of definition. In addition, the joining conditions 

~-~ni B.e % = ~ i  B.e (pl; (2) 

0 t 0 Re ~ 
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